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Statistical simulations of diffusional coarsening in finite clusters
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The problem of diffusional interactions in a finite-sized cluster of spherical particles is studied. Simulations
of diffusional interactions with size distribution and volume fractionVv , as input parameters, referred to as
snapshot~static! simulations, are compared with dynamic~time-dependent! simulation results. The precise size
distribution information in the snapshot simulations is obtained on the basis of a perturbation technique
proposed recently by Fradkovet al. @Phys. Rev. E53, 3925~1996!#. Robust iterative solution schemes for the
quasistatic diffusion equation facilitate investigations of coarsening systems comprised of one million particles
at ultralow (10213) to moderate~0.25! volume fractions. The objective of carrying out simulations at such low
volume fractions is to analyze the first-order volume-fraction-dependent correction to the effective coarsening
rate predicted by the Todes, Lifshitz, and Slyozov~TLS! theory at infinite dilution. When volume fraction is
considered as an input parameter, the deviation of coarsening rates from that of the infinite dilution limit of
TLS varies asA3 Vv for a finite cluster andAVv ~Debye screening! for an infinite system. Accurate numerical
investigations of the rollover volume fraction (Vv* ) above which theA3 Vv behavior changes toAVv showed that
Vv* varies asn22, wheren is the number of particles in the spherical cluster. The deviation of coarsening rates
from TLS observed from dynamic simulations agrees with that predicted by snapshot simulations forVv

,0.01. The dynamic results are higher than the snapshot results forVv.0.01. The coarsening rate of the
average particle can be calculated directly from dynamic simulations and indirectly from snapshot simulations
by a perturbation relation. A different type of snapshot-ensemble averaging is suggested on the basis of the
functional nature of the individual particle monopole source or sink strengths. Dynamic and snapshot simula-
tions with dipoles were carried out up to a volume fraction of 0.25, and departure from Debye screening
behavior was observed. The inclusion of dipole terms affects the deviations noticeably only above a volume
fraction of 0.1.@S1063-651X~98!02208-9#

PACS number~s!: 82.30.2b
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I. INTRODUCTION

Diffusional coarsening represents an important kine
process in the late stage of phase separation. This pro
characterizes the microstructural evolution of dispersed
cipitates in a matrix phase. The asymptotic limit of this ev
lution is described by the theories of Lifshitz and Slyozov@1#
and Todes~TLS! @2#. These theories, however, descri
coarsening at infinitesimally low volume fractions. At fini
volume fractions, there is a deviation in the average coars
ing rate from that of the TLS theory. The increase in coa
ening rates is expected because the TLS theory does not
into account any interactions among particles. Experime
have shown that as the volume fraction increases, the am
tude of the temporal power law for the average particle s
i.e., the rate constant, rises. The particle size distribu
function becomes broader and more symmetrical than
predicted by the TLS theory. The concentration gradien
the particle/matrix interface is expected to increase prog
sively with volume fraction. It has been established that
exponent of the temporal power law remains unchanged
nonzero volume fraction, but the rate constant increases@3#.

The influence of a nonzero volume fraction of the coa
PRE 581063-651X/98/58~2!/2119~12!/$15.00
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ening phase has been investigated through mean-field t
ries@4–7# and statistical field theories@8,9# and by numerical
simulations@10–12#. Marder’s theory@13# yields a rate con-
stant at a particular volume fraction that is higher than th
predicted by other theories. The analytical theory of Marq
see and Ross@8#, based on the diffusion analog of Deby
screening for infinite systems, leads to deviations of coa
ening rates proportional toAVv. On the other hand, severa
other numerical analyses of finite systems clearly show
the relative change in the rate constant is proportiona
A3 Vv. A recently published paper by Fradkov, Glicksma
and Marsh@14# shows the existence of both exponents
volume fractions, using numerical simulations of a fin
cluster of particles. They specifically solved the quasista
diffusion field for a finite cluster of particles with the siz
distribution and volume fraction as input parameters. T
type of simulation, also referred to as snapshot simulation
less time consuming than the conventional time-depend
simulations. Their work, however, had the limitations
computing the behavior of clusters with less than a thous
particles with limited statistical samples. This paper exten
their perturbation theory and simulations to larger syste
and larger ensembles to determine accurately the rollo
2119 © 1998 The American Physical Society
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volume fraction at which diffusional interactions of the ord
of the diffusion Debye length become comparable with
teractions of the order of the cluster size that character
the spatial extent of the cluster. Further, in this paper we a
report time-dependent simulations in the volume fract
range 10212,Vv,0.25 and compare the results with tho
obtained from snapshot simulations.

The numerical simulations by Akaiwa and Voorhees@15#
show spatial correlation effects on coarsening of partic
placed in a periodic array, with or without solute depleti
zones. Although experimental measurements@16,17# of
structure factors and spatial correlation functions have
directly established the presence of solute depletion zo
some researchers@18–20# have attempted to reproduce stru
ture factors by assuming that particles are surrounded b
spherical depletion zone. Krichevsky and Stavans@21# ex-
perimentally established that the probability of findin
smaller particles near larger ones is greater than that of fi
ing smaller and larger ones near each other. Recently,
same authors@22# also discuss the direct correlation and m
dium polarization effects based on their experimental inv
tigations on two-dimensional microstructures comprised o
crystalline phase dispersed in a continuous melt phase.

This paper is organized as follows. In Sec. II, we descr
the mean-field formulation of the problem of coarsening
spherical particles to dipolar order. This is followed by S
III, wherein we present some kinetics of finite coarsen
clusters and briefly discuss the perturbation theory that fo
the basis of the snapshot simulations. In Sec. IV, we desc
in detail our simulation techniques~snapshot and dynamic!
and also present our analytical findings as regards quan
of physical interest. The words ‘‘particles,’’ ‘‘droplets,’’ an
‘‘precipitates’’ are used interchangeably throughout the
per.

II. MEAN-FIELD APPROACHES

The description of isothermal coarsening is given in ter
of a dimensionless concentration potential,f, that satisfies
the Laplace equation

¹2f50. ~1!

The boundary conditions at the surface of thei th particle
having a radiusRi are specified through the Gibbs-Thoms
local equilibrium relation

f i5
l

Ri
, ~2!

wherel is a capillary length defined by

l52
gV

kBT
. ~3!

Here,g is the specific interfacial free energy,V is the molar
volume, kB is Boltzmann’s constant, andT is the absolute
temperature. The solution to the Laplace equation~the exte-
rior Dirichlet problem! to dipolar order forn particles can be
represented as
-
es
o

n

s

ot
s,

a

d-
he
-
-

a

e
f
.
g
s

be

ies

-

s

f~r !5(
i 51

n
lBi

ur2r i u
1(

i 51

n

ldi•“S 1

ur2r i u
D1f` . ~4!

The monopole strengthsBi ’s, the dipole strengthsdi ’s, and
the far field potentialf` are the unknown coefficients to b
determined using the other boundary conditions of the pr
lem. The assumption of a quasistatic diffusion field leads
the following time rate of change of the particle radius:

v~Ri !5
22lD0c0BiV

Ri
2 , ~5!

whereD0 is the diffusion coefficient andc0 is the equilib-
rium solubility. The size distribution functionF(R,t) fol-
lows a Fokker-Planck-type equation in size-time space. H
we do not consider the effect of noise or residual mat
supersaturation, and thus the conservation equation ma
approximated as

]F

]t
1

]„v~R!F…

]R
50. ~6!

The unknown size distribution function is normalized a

E
0

`

F~R,t !dR5Nv , ~7!

whereNv is the number of particles per unit volume. Wit
this normalization the volume fractionVv is defined as

Vv[
4p

3 E
0

`

F~R,t !R3dR, ~8!

hence

Vv5
4p

3
Nv^R

3&. ~9!

The diffusion potential at a particle-matrix interface arisi
from the self-field and the fields of other particles can
expanded in a Taylor series@23# around the particle center a

l

Ri
5S f i* 1f`1

lBi

Ri
D1S“f i* 1

ldi

Ri
3 D •Ri1¯

1~higher-order terms!. ~10!

For Eq.~10! to possess solutions for any particle and dire
tion in space, we require for the scalar terms

l

Ri
5f i* 1f`1

lBi

Ri
, ~11!

and for the vector terms

“f i* 1
ldi

Ri
3 50. ~12!

Here,f i* is the potential created by all other particles at t
center of thei th particle and is given by
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f i* ~r !5 (
j Þ i 51

n
lBj

ur j2r i u
1 (

j Þ i 51

n

ldj•“S 1

ur j2r i u
D ~13!

and

“f i* ~r !5 (
j Þ i 51

n

“

lBj

ur j2r i u
1 (

j Þ i 51

n

ldj•““S 1

ur j2r i u
D .

~14!

Further, for a conservative coarsening system, strictly in
asymptotic stage~again neglecting any residual supersatu
tion! the volume fraction constraint over the dispersed ph
may be written in integral form as

4p

3 E
0

` ]F~R,t !

]t
R3dR50. ~15!

Equation~15! can be written for a discrete system of pa
ticles as

(
i 51

n

Bi50. ~16!

The TLS limit of the same problem attributes an infin
extent to the diffusion field of a single particle, thus giving
monopolar order the analytic form

Bi5S 12
Ri

R* D , ~17!

whereR* is the critical particle radius, the interface potent
of which matches the far-field potential and is given by

R* 5l/f` . ~18!

Todes introduced a dimensionless variable transformatior
5R/R* . The dimensionality of diffusion-limited coarsenin
implies that kinetically the critical radius behaves as

R* 5a~2lD0c0Vt !1/3, ~19!

where a is a dimensionless kinetic coefficient that can
determined from the Lifshitz and Slyozov@1# stability analy-
sis. Todes also suggested a family of self-similar solutio
for the distribution functionF(R,t), given by

F~R,t !5
Nv~ t !

R* ~ t !
f ~r,a!. ~20!

Substituting Eq.~20! and BTLS5(r21) into the conserva-
tion equation and using separation of variables to solve
eigenvalue problem with the help of Eq.~8!, we get

r@~3/a3!~12r!1r3#
] f

]r
1@24r31~6/a3!#~12r/2! f 50.

~21!

This can be rewritten in separated form as

d f

f
5

24r31~6/a3!~12r/2!

~3/a3!~12r!1r3

dr

r
~22!
e
-
e

l

s

e

for the time-independent part of the size distribution in t
TLS case. Here we have treatedB as a continuous function
of r. Note that in@14# the equation corresponding to Eq.~22!
has a typographical error.

The stability argument of Lifshitz and Sloyozov@1# states
that for the size distribution to be self-similar, there exists
maximum particle radiusrmax in r space for which the time
rate of change inr space follows,

Fdr

dt G
rmax

50 ~23!

and

F ]

]r

dr

dt G
rmax

50. ~24!

The above two conditions can also be restated in term
the denominator of Eq.~22!, D5(3/a3)(12r)1r3. Lifshitz
and Slyozov stated that the only stable solution of the co
nuity equation corresponds to a value ofa, which makes the
positive roots of the denominator coincide. This implies th
aTLS5(2/3)2/3.

There are different approaches to incorporate the effec
volume fraction on coarsening. Some researchers have
stricted the interparticle spacing to the average interpart
separation. In systems that are not sparse, direct screenin
nearest neighbors becomes important, and closest par
correlations begin to develop@3#. Marqusee and Ross@8#
restricted the extent of the Laplacian field by taking in
account screening in a two-phase medium consisting o
distribution of sources and sinks. This leads to the Pois
equation for the spatially coarse-grained background di
sion potentialf, namely

¹2f524ps, ~25!

where the source or sink densitys is given by

s~r !5E
0

`

@l2Rf~r !#F~R,t !dR. ~26!

The background potentialf` has been replaced by th
coarse-grainedf, giving the linearized form of the Poisson
Boltzmann equation, also known as the Debye-Hu¨ckel equa-
tion:

¹2f2k2~f2f`!50. ~27!

In Eq. ~27!,

k254p^R&Nv ~28!

and

f`5l/^R&. ~29!

The Debye-Hu¨ckel equation is well known from theories o
ionic plasma and electrolytes. The solution to this equati
subject to the Gibbs-Thomson boundary condition, is of
form of a Yukawa potential
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f~r !5(
i 51

n

l
Bi

ur2r i u
e2kur2r i u1f` . ~30!

Now theBi ’s are defined as

Bi5S 12
Rif`

l D ~11kRi !5Bi
TLS~11kRi !. ~31!

The coefficientk is the reciprocal of the diffusion analog o
the screening length. It represents the natural cutoff dista
for the direct particle interactions via the diffusion field, b
yond which the particles are isolated from each other by
intervening two-phase medium. This, however, is not
same as the diffusion depletion distance proposed
Rikvold and Gunton@19# or by Pedersen’s curve fitting
analysis of SANS data@18#. The screening length represen
the distance beyond which particles do not diffusionally
teract with each other. Interactions within this distance c
be broken down into single-body and many-body diffusio
interactions. In order to incorporate the effect of the volu
fraction, Tokuyama and Kawasaki@24# used hierarchy equa
tions to describe many-body diffusional interactions. T
equations they obtained were in general different from
familiar BBGKY hierarchy equations for molecular distribu
tion functions @25#. Diffusional interactions between pa
ticles in a finite cluster can be represented as hard-sp
interactions coupled with solute depletion zones@18,19#.
Pedersen specifically modeled coarsening particles
Percus-Yevick hard spheres encapsulated in a solute d
tion zone of size proportional to the hard-sphere radius its
This method precisely described structure factors in sinte
experiments@20#. The random field cell approach develop
by Marsh and Glicksman@3# proposed a diffusion depletio
distance for each particle as the radial distance at which
spherically symmetric Laplacian potential of that partic
matches the mean-field potential. This approximation a
suggested a one-to-one correspondence between par
and matrix field cells surrounding them.

III. KINETICS OF FINITE COARSENING CLUSTERS

The length scales of a finite coarsening cluster, i.e
finite number of particles confined to a finite volume, a
important factors in determining the kinetic properties
coarsening systems. The four important length scales
finite coarsening cluster are@14# the size of the particles, a
characterized by the average radiusLR'^R&; the interpar-
ticle spacing as characterized byLN'Nv

21/3; the Debye
screening radius as characterized byLD'k21; and the ex-
tent of the total coarsening system, defined for a spher
cluster asL tot5(3n/4pNv)1/3, wheren is the number of par-
ticles in the cluster. It is assumed that the cluster is loca
homogeneous and spatially isotropic, and that the ove
size of the cluster is time independent. Therefore, one
define the volume fraction of a cluster of particles to be

Vv5

(
i 51

n

~4/3!pRi
3

~4/3!p~L tot!
3 . ~32!
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A finite system of coarsening particles, in contrast to an
finite system, cannot showuniformasymptotics, because an
finite coarsening system achieves its end state as a s
particle in finite time. Finite systems, however, may sho
intermediateasymptotics only. By this we mean that th
coarse-grained average over time of these cluster param
becomes identical to those in self-similar infinite system
even though the instantaneous values of the time-depen
cluster parameters may fluctuate. In general, continu
coarsening theories yield quantities that are equivalent to
coarse-grained averages over time for finite clusters. He
the coarse-grained intensive length scale parameters,
LR , LN , and LD can be expected to scale with time
predicted by continuum theories.

In finite systems, as observed in@11,26,15#, coarsening
occurs via continuous evolution of particle radii and by t
discontinuous disappearance of the smallest particles.
coarse-grained averages depend on both mechanisms.
objective of simulating coarsening in finite clusters is
compute the coarsening rate. This can be found from
slope of the evolution of̂R& with time. The coarse-grained
behavior should show smootht1/3 behavior, which is in
agreement with the asymptotic power law of continuu
theories. In order to obtain a smooth time dependence
large number of particles have to be simulated. If the obj
tive is to determine the volume fraction dependence of
average rate constant of coarsening, then a time-depen
simulation would be needed for an enormously large num
of particles at different volume fractions. This approa
would pose a computationally intensive task. The task wo
be made considerably easier if the size distribution and v
ume fraction could be obtained or assumeda priori at each
volume fraction. The multiparticle diffusion equation cou
then be solved instantaneously to calculate the average
constant of coarsening.

In order to obtain the size distribution at low volume fra
tions, one can approximate it as a perturbation of the T
distribution. The particle growth rate at finite volume fra
tions can be written as a perturbation of that at infinite
mally low volume fraction as done in@14# as

v~R!5vTLS~R!@11e~R!#, ~33!

where e(R) is a small perturbation. If the perturbation
from Debye screening, thene(R)5kR. Marqusee and Ros
@8# used the same stability analysis as Lifshitz and Slyoz
to obtain the kinetic constant corresponding to Debye scre
ing as

a~Vv!5aTLS@110.740Vv
1/21~higher-order terms!#,

~34!

whereaTLS5(2/3)2/3. Fradkovet al. @14# used the same sta
bility analysis to arrive at a more general perturbation res
as follows: If the denominator in Eq.~22! is perturbed, then

D5r32b~r21!~11e!, ~35!

where b53/a3. The eigenvalue forb and the maximum
value of r can be found for solving the equation setD50
and D850 @14#. To obtain first-order corrections to the e
genvalue, we write
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b5bTLS1db ~36!

and

r5rTLS1dr. ~37!

Retaining first-order terms we have

D52db/2227e/850, ~38!

whererTLS
max53/2. This results indb5227e/4. Hence

a5aTLS@11~3/16!1/3e~Rmax
TLS!# ~39!

and

rmax5rTLS
max1~3/8!e8, ~40!

wheree85]e/]r. Fradkovet al. used a snapshot simulatio
technique that indirectly assumed ane~r! value for each par-
ticle in the finite cluster and then averaged the perturbati
over the entire system of particles, using the assumption
the global averagêe~r!& reflects the behavior ofe(rmax).
This implies that the magnitude of the growth rate for ea
particle size class in a cluster is uniformly magnified relat
to the TLS values. A more consistent refinement to this
proximation is presented in the next section and yields m
accurate values fore for a given volume fraction. In this
paper, we also extend this global average to several rea
tions of the system of particles in finite clusters.

Diffusional interactions in a cluster can be considera
influenced by noise in the system and by centroid migrat
of particles. Voorhees and Schaefer@27# considered the in-
teraction between a pair of particles with a background
tential f` . They computed the interfacial velocities in th
normal direction analytically to dipolar order as

Vn
15~1/R1!$f`21/R11~1/R22f`!R2/2d2R1R2/4d2

3@1/R12f`13~1/R22f`!cosu#%. ~41!

In Eq. ~41!, R1 and R2 are the particle radii andd is the
interfocal separation as defined in@27#. The cosu term
clearly suggests that the particle translates in thenW cosu5kW
direction at a speed

VT
1523/4d2@12R2f`#. ~42!

For ann-particle system, however, the leading-order term
the migration velocities@13# is

VT
i 5r i5

2di

Ri
3 . ~43!

Migration of particles in a cluster can result in the develo
ment of time-dependent correlations. Higher-order inter
tions of particles result in shape change, particularly flatt
ing of approaching interfaces. The influence
hydrodynamic interactions on the coarsening rate of drop
combining through diffusive coalescence was studied by S
gia @28#. It was concluded that for low droplet volume fra
tions the evaporation-condensation mechanism propose
Lifshitz and Slyozov is dominant. Further, the rate of coal
s
at
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cence is diminished by the effects of surface deformati
and flattening of approaching interfaces in the late stage
phase separation.

IV. NUMERICAL SIMULATION AND RESULTS

In this section we solve Eqs.~1! and~2! numerically for a
dispersion of coarsening spheres with two different appro
mations for the potentialf: ~i! a monopole representatio
and ~ii ! a monopole plus dipole representation.

Snapshot simulations were done by choosing a partic
size distribution at a given volume fraction and solving f
the diffusion field of the given number of particles in th
spherical cluster of radiusL tot . The geometry was created b
assigning positions to the particles using the procedure
random sequential addition of hard spheres into a sphe
cell @29#. Each particle was assigned a radius randomly d
tributed around the average value of the radius^R&5lR . We
specifically chose the TLS and rectangular size distributi
of different widths. The numerical results obtained were re
tively insensitive to the size distribution used forVv,0.01.
The ratioLR /L tot as defined in the preceding section w
varied to obtain different volume fractions according to E
~26!. We maintained the same relative particle positions o
the range of volume fractionVv,0.01, but proportionally
changed the interparticle distances and thus changed the
of the cluster. For higher volume fractions (Vv>0.10) we
further modify this method as explained later in this sectio

Inserting a solution of the form of Eq.~4! into Eqs.~1!
and ~2! leads to@4n11#3@4n11# linear equations. The
condition number for this problem is large, but can be
duced by rewriting the problem as two systems of@4n#
3@4n# linear equations. Furthermore, each of these sma
systems is positive definite and was solved iteratively wit
preconditioned conjugate-gradient method suggested by
Fadden and Greengard@30#. The relative error was set to
value of 1024 at Vv50.10 and progressively reduced
lower volume fractions to 1027 at Vv510214. Calculations
involving n monopoles only led to systems of@n11#3@n
11# linear equations and were solved in a similar mann
The number of realizations used was chosen so that an
semble of at least a million spheres was involved in the c
culations at each volume fraction studied.

Dynamic simulations were performed by choosing an i
tial size distribution and an arbitrary number of particle
solving for the diffusion field and subsequently time marc
ing the radius of each particle according to Eq.~5!. In order
to account for particle disappearances, we chose a cu
radius, below which a particle is considered to be nonex
ent. Time marching was done to obtain a final desired nu
ber of particles coarsening in the asymptotic regime. T
above procedure was repeated for several initial realizat
and the results averaged out. The method of numerical s
tion was the same as that used for the snapshot simulat

We performed the dynamic simulations with a partic
cutoff radius of 0.05 times the maximum radius and w
1500 particles in the initial ensemble. Time marching w
done to obtain an average of 500 particles coarsening in
asymptotic regime. The asymptotic regime is characteri
by the cubic power-law behavior of the average particle
dius of the cluster, such as^R&3;t, as shown in Fig. 1.
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In order to understand the basis of the snapshot simula
technique, we focus attention on the quantityD. The devia-
tion D of the coarsening rate from the TLS limit (Vv50) is
given as

D~Vv!5
^v~R,Vv!&2^v~R,0!&

^v~R,0!&
. ~44!

The above definition originates from averaging Eq.~33! as

^v~R!&2^vTLS&

^vTLS&
5

^vTLSe~R!&

^vTLS&
~45!

and noting thatvTLS andv(R,0) have been used interchang
ably. The right-hand side of the above equation can also
thought of as an ensemble average of the volume frac
induced perturbations in the growth rate of the particles fr
a known set at another volume fraction. This quantity can
calculated at an instant for a system of coarsening parti
with a given size distribution and at a known volume fra
tion. In principle, one can substitute the TLS distributi
with any other known distribution at a nonzero volume fra
tion and ensemble average the perturbations at that vol
fraction.

The valueD(Vv), thus obtained, is substituted into E
~39! and hence the ratioa/aTLS can be calculated. The ab
solute rate constant of the average particle is then

K5a35
d

dt
~R* 3!. ~46!

Hence K/KTLS5(a/aTLS)35@11(3/16)1/3D#3 can in
principle be calculated for a given volume fraction once
deviationD(Vv) at that volume fraction is known. Hence
forth we unambiguously refer toD(Vv) as the deviation in
coarsening rates, and toK as the coarsening rate of the a
erage particle. The value ofK can also be obtained directl
from the slope of thêR&3 vs t plot in a time dynamic simu-
lation.

The principal assumption made here is that the glo
average^e(R)& reflects the behavior ofe(Rmax). This as-
sumption is necessary since a finite coarsening cluster
not have a statically valid representation of enough partic
at Rmax. The definition ofD(Vv) in terms of a global averag
over a large statistical ensemble of particles makes it p
sible to get accurate estimates of coarsening rates. Usi
single global averagee(R) implies that theBi values in-

FIG. 1. Asymptotic power law of coarsening.
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crease uniformly in magnitude for all radii values at a giv
volume fraction. This is equivalent to assuming that theB(r)
vs r plot of Fig. 2, which is a straight line for the TLS
theory, remains a straight line and that only the slo
changes. There are two fixed points in this plot forB(r):
B(1)50, defining the critical particle size, andB(0)521,
independent of volume fraction, caused by field localizat
for disappearing particles that approximate monopoles. T
the functionB(r) becomes curved for shrinking particles
order to have a larger slope nearr51 yet pass through thes
two fixed points. Coarsening theories and simulatio
@10,11,3#, however, have shown that theB(r) function re-
mains nearly linear for growing particles (r>1). Thus
^e(R)& is essentially constant for (r>1), and a more reli-
able estimate of this parameter used to determineD(Vv) can
be obtained by averaging the individuale values only for the
growing particles in a given cluster.

If the deviationD from Eq. ~44! is computed at different
times for a given volume fraction, we can study the tim
dependence ofD(Vv ;t). This quantity will also show differ-
ent branches of constant particle number with vertical jum
associated with particle disappearance. A smoother de
dence can be obtained by coarse-graining the data.
coarse-graining was done by binning theD(Vv ;t) data in
time and representing each bin by its average value. In do
so, we are averaging over the different branches of cons
particle number and the vertical jumps from each branch
comparison of coarse-grained values ofD(Vv ;t) calculated
for an average overall particles, withD obtained by averag-
ing over growing particles only, in Fig. 3, clearly sugges
that the average over growing particles alone is more sta
and also closer to the snapshot values calculated by the s
shot simulation technique.

If D is given a stochastic description, then we need
associate a finite mean and variance with it. From Fig. 3D
for r>1 has the snapshot value as its mean. The next ob
tive now is to find a way to assign its variance appropriate
In this paper, ensemble averaging of these snapshots
used to get its variance. Although this serves our curr
purpose, a better estimate of the variance can be obtaine
solving a non-Markov type Fokker-Planck equation for t

FIG. 2. Functional form ofB(r) showing noise distribution
around the least-squares polynomial fit.B(r) for r>1 is almost
linear forVv50.2.n(t) denotes the number of particles in the clu
ter.
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particle growth rates. Enomoto and Tokuyama@31# have
used a similar method for studying phase separation.
another approach is to obtain the noise functional relati
ship for B(r) vs r, with or without volume fraction as a
parameter, and employ stochastic decomposition techniq
Preliminary studies confirm the non-Gaussian nature of
variance of theB(r) data from the best-fit polynomial func
tion ~see Fig. 2!. Such studies, however, do not affect t
volume fraction exponents of coarsening rates and shall
be treated here.

The deviations in coarsening rates were computed in
volume fraction range 10214<Vv<0.01. The deviation val-
ues were found to agree with the Debye screening result
Fradkov, Glicksman, and Marsh@14#, who used a first-orde
perturbation analysis to arrive at the expression

D5S 12m21

m12m22
D S 3

m3
D 1/2

Vv
1/2. ~47!

Here them i ’s are thei th moments of the size distributio
with both shrinking and growing particles taken into accou
and

FIG. 3. Coarse-grained deviation from TLS vs time. Coa
graining was done by binning the data points and representing
bin by its time average. The snapshot value was calculated from
known size distribution atVv50.10.
et
-

es.
e

ot

e
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t,

m i5
*0

`RiF~R,t !dR

^R& iNv
. ~48!

For the TLS distribution,

D50.695Vv
1/2. ~49!

The above equation is only a first-order approximation
nonzero volume fractions, given that the size distribution
self is broader than the TLS distribution. Strictly, one mu
use Eqs.~33! and ~34! and solve for the size distribution
from Eq. ~21!. Marqusee and Ross@8# have obtained such
corrections to the TLS size distribution by using the diff
sion analog of Debye screening at much higher volume fr
tions.

Snapshot simulations were carried out withn chosen to be
100, 316, 1000, and 3162, limited to monopoles in the v
ume fraction range 10214<Vv<0.01. The number of realiza
tions were chosen so as to statistically simulate a total o
million particles. Such large ensembles of particles had to
realized in order to reduce the variance inD. We found that
the deviation of coarsening rate from TLS showed aVv

1/3

behavior at low volume fractions and aVv
1/2 dependence at

higher volume fractions, as shown in Fig. 4. The transition
rollover from the1

3 to the 1
2 behavior was found to occur a

Vv* , which depended on the number of particles as

Vv* ;
1

3n2
. ~50!

The Vv* for the 3162 particle case was graphically estimat
by the point of intersection of a line of slope13 through the
point „10214,D(10214)… and the lineD50.695Vv

1/2 in Fig. 4.
The number of particles in the cluster and the correspond
number of realizations used for averaging are also shown
Fig. 4.

In order to understand why the rollover behavior occu
we look at the expressions for the cluster size and the De
length,

LD5321/2S ^R3&

^R& D 1/2

Vv
21/2 ~51!

e
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tes
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-
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.

FIG. 4. Deviations in snapshot coarsening ra
at low volume fractions. The numbers such
316/3180 mean that diffusion fluxes were com
puted for 316 particles in a single cluster and t
results statistically averaged over 3180 realizatio
and so on. The open circles indicate the rollov
points where the slope changes from 1/2 to 1/3
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and

L tot5n1/3^R3&1/3VV
21/3. ~52!

The above equations show that the Debye length gr
faster than the cluster size with decreasing volume fract
This implies that at some small volume fractionVv* , theLD

exceeds the cluster size, and hence diffusion Debye scr
ing is precluded. At such low volume fractions, one can
timate the diffusion fluxes by considering the monopo
terms only, and we obtain

Bi2BTLS52
Ri

l F (
j 51Þ i

n
Bj

ur j2r i u
G .

The right-hand side of the above equation can be estim
using the appropriate length scales defined in Sec. III. He

Bi2BTLS

BTLS
'

LR

LN
5

^R&1/3

^R3&
Vv

1/3.

This shows that for extremely sparse clusters, the lead
order deviation from TLS kinetics goes asVv

1/3. Thus, the
rollover behavior occurs at some volume fraction for whi
the interactions at the order of the cluster size become c
parable with those at the order of the Debye length. Equa
these interactions gives the approximate condition

LD~n,Vv* !'L tot~n,Vv* !. ~53!

Hence

Vv* ;
1

27n2 . ~54!

The difference in the constants appearing in Eqs.~54! and
~50! can be related to an edge effect, which is precluded
the length scale argument. An edge effect may be inheren
finite clusters, since particles close to the outer regions of
cluster have fewer neighbors than those deep within the
terior. We discuss this subtle effect in the subsection on
riodic clusters.

For volume fractions greater than 0.01, one expects
deviation values to gradually become sensitive to the na
of the size distribution and spatial correlations develop
through time evolution. In order to test the validity of th
snapshot simulation technique forVv<0.01, a cluster of
2000 initial particles atVv50.02 was time marched until th
asymptotic stage of coarsening was reached with 500
ticles remaining in the cluster. At this instant the partic
positions and radii were recorded. Now the ratioLR /L tot for
this cluster was suitably changed to obtain a cluster of
particles at lower volume fractions in the range 10213<Vv
<0.01. The deviationD at each volume fraction was calcu
lated from Eq.~44!. Comparison of the deviations calculate
in this manner with those calculated by directly time marc
ing the cluster at each volume fraction yielded good agr
ment. More precisely, the dynamic simulation predict
D(0.01)50.069860.0015 whereas the snapshot simulati
result wasD(0.01)50.0688. Both these values are close
the perturbation theory value of 0.0695. At much lower v
ume fractions, the agreement was even better. Thus, giv
s
n.
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time-marched system of particles in a finite cluster at a giv
volume fraction, one can estimate the deviation,D. Thus, the
average coarsening rate constant at lower volume fract
can be estimated accurately by way of snapshot simulati
avoiding tedious dynamic simulations at lower volume fra
tions.

In order to check if such a conclusion can also be reac
at volume fractions higher than 0.01, some dynamic a
snapshot simulations were carried out in the volume fract
range 0.01,Vv,0.2. Specifically, we considered an alrea
time-marched cluster of 500 particles atVv50.2, and
changed the ratioLR /L tot to obtain a cluster of 500 particle
at Vv50.1. The radii of the particles were distributed arou
the average value of the radius in a manner similar to t
used in the former volume fraction and assigned the sa
relative positions as before. In doing so, we perturb the s
distribution and recalculate the corresponding diffusio
fluxes consistent with Eq.~45!. Figure 5~a! shows the scaled
particle size distributionf (r) at Vv50.2 and 0.1, obtained
from time dynamic simulations. The snapshot simulati
technique assigns the radii for particles atVv50.1, according
to f (r) at Vv50.2, but taking into account the resulta
change inrmax. This procedure follows the methodology o
the perturbation technique. The change inrmax is recorded
automatically in a snapshot simulation. This is true beca

FIG. 5. ~a! Scaled particle size distribution.~b! Comparison of
coarsening rates at different volume fractions. The snapshot re
are based on averaging over growing particles alone.
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we move from one volume fraction branch of theB vs r plot
to another branch corresponding to a lower volume fracti
The almost linear nature of theB vs r curve ~Fig. 2! for
growing particles shows that the kinetics of the growing p
ticles is well captured by the snapshot simulations. The o
significant errors in the snapshot simulations would be th
arising from time evolved spatial correlations and the prec
nature of the size distribution, both of which are unique
the asymptotic stage of each volume fraction. The use
different configurations at the original volume fractionVv
50.20 is bound to lead to different particle coarsening ra
at Vv50.10. Hence, one needs to carry out some averag
over the configurations atVv50.10. This was again done b
random sequential addition of the particles into the sa
cluster volume. This averaging can be done over eno
realizations to obtain a reasonably accurate estimate of
deviation D. The calculated value of the deviation wa
D(0.1)50.316. In terms of the average rate constant valu
K(0.1)/KTLS51.77260.033 for a directly time-marched
cluster, whereasK(0.1)/KTLS51.622 for a cluster that ha
been snapshot simulated at this volume fraction. If the
semble averaging were to be carried out for particles in
range 1,r,rmax, thenD(0.1)50.336 and the correspond
ing K(0.1)/KTLS51.696. We believe that the small relativ
difference in these values from the snapshot and dyna
simulations occurs because the time-evolved spatial corr
tions at each volume fraction are unique. In other words,
local environment in which a particle finds itself is differe
at different volume fractions. A more detailed explanation
this point could be given in terms of structure factors a
nearest-neighbor distributions, and is part of an ongo
study to be reported elsewhere. A similar comparison a
volume fraction of 0.01 yielded a value ofD(0.01)
50.069860.0015 for a directly time-marched cluster and
value of D(0.01)50.0687 for a cluster obtained as a sna
shot at this volume fraction. At volume fractions beyo
about Vv>0.1, we expect spatial correlation effects to
important. At these intermediate volume fractions the coa
ening rates are sensitive to the precise nature of the
distribution and its time-evolved correlations.

In fact, snapshot simulations based on imprecise size
tributions at the higher volume fractions have led to dev
tions and average coarsening rates that are much diffe
from those obtained directly from dynamic simulations as
@32#. Hence, snapshot simulations may not be a reliable
for predicting accurately the coarsening rates at modera
high volume fractions, especially if the precise nature of
size distribution and spatial correlations is not incorpora
at the original volume fraction. Nonetheless, snapshot si
lations result in accurate predictions forVv<0.01. In Fig.
5~b!, a comparison is shown of time-dynamic simulation
sults with the results of previous simulations by Akaiwa a
Voorhees@15# and the random field cell model by Marsh an
Glicksman@3#. The theory in@3# incorporates a diffusiona
interaction distance for each particle in a matrix volume t
has a certain specified correlation with the particle volum
The results of this theory are about 20% higher than
present simulation results. Also, this theory yields aVv

1/3 de-
pendence forD for an infinite system at low volume frac
tions.
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We also performed snapshot simulations including dip
terms in the potential formulation for clusters containing 1
particles to determine the relative significance of dipolar
teractions compared to monopolar interactions at low volu
fractions. Again at low ranges of volume fraction the exp
nent of the volume fraction was13 , and at higher values i
was found to be1

2 .
The dipolar contributions became significant only wh

Vv>1022. Thus the exponents of the volume fraction do n
change with the addition of dipole terms in the volume fra
tion range 10214<Vv<0.01. In order to understand the rel
tive significance of the dipole terms at volume fractio
higher than 0.01, we performed snapshot simulations of 1
particles in a spherical cluster in the volume fraction ran
0.02<Vv<0.20. Our objective is to calculate the increase
deviation caused by the dipole terms alone. The differe
DM1D2DM between the deviations for the case with mon
poles and dipoles (DM1D) and that with monopoles only
(DM) was computed for 1000 particles. The differen
showed aVv

0.6860.02 dependence at volume fractions close
0.2 and aVv

0.5660.02 dependence at volume fractions close
0.02. Hence we conclude that the inclusion of dipolar int
actions results in a small positive departure from theVv

1/2

behavior. We also noted that at these volume fractions,
coarsening rates were more sensitive to the size distribu
used, in contrast to the relative insensitivity observed at l
volume fractions. Particle migration rates were also co
puted from Eq.~43!, but the migration neither changed th
volume fraction exponents nor other qualitative conclusio
At higher volume fractions, however, spatial correlatio
were affected by particle centroid migration.

The proposition that the particles themselves are not h
spheres but have around them a hard concentric she
known to impose another length scale corresponding t
solute depletion zone. The effect of depletion zones and s
tial correlations on the deviations from TLS has been d
cussed by some researchers. Rikvold and Gunton@19# pro-
pose a depletion zone given asVv

21/321. The simulations by
Akaiwa and Voorhees@15# and the structure factor fits o
Pedersen@18#, however, use a depletion zone of 0.5 times t
radii of the particles. Pedersen’s work demonstrated tha
model with both particle correlation and polydispersity e
fects can be used for interpreting small-angle scattering d
from precipitates in alloys. He used a polydisperse ha
sphere model based on analytical expressions by Vrij@33#
and produced good fits of structure factor data usingRhs, a
hard-sphere radius, as one of the parameters. The un
standing here is that every particle along with its concen
outer sphere of influence can be characterized by a h
sphere of radiusRhs. The corresponding hard-sphere volum
fraction Vv

hs is simply related to the precipitate volume fra
tion by

Vv5Vv
hsY S Rhs

R D 3

. ~55!

In our specific case ofRhs51.5R, we haveVv5Vv
hs/3.375.

We performed simulations with depletion zones of 0.5 tim
the radii and found that theD values from simulations as
shown in Fig. 6 were slightly lower than in the case witho
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any depletion zones for the volume fraction range of 0.1
10214. The dependence of the deviationD was still Vv

1/3 in
the ultralow volume fraction range andVv

1/2 in the upper
range shown in Fig. 6. The rollover precipitate volume fra
tion still depends on the number of particles in the cluster
Vv* ;1/n2. Thus a depletion zone does not significantly al
the diffusional interactions of the order of the interpartic
distance as well as the Debye length. The only noticea
effect was that the rollover volume fractionVv* is larger than
that for cases without depletion zones by a multiplicat
factor between 3 and 4. Accurate numerical estimation ofVv*
showed that the same factor was 3.7060.33'1.53. This cal-
culation needed an accuracy of a very high order. When
used a depletion zone withRhs51.8R, we again found the
factor to be 6.1060.33'1.83. In order to get more accurat
estimates, one needs to implement variance reduction t
niques such as importance sampling@34#. Based on the
present simulation results on slope estimates, we find tha
rollover precipitate volume fraction for the case with dep
tion zones,Vv*

DZ , is related to the rollover volume fractio
without depletion zones asVv* 'Vv*

DZ/(Rhs/R)3. There is,
however, a limit to the size of the depletion zone that can
used for a given number of particles at a given volume fr
tion in a finite cluster, the limit being that of close-packing
hard spheres@35,36#. The depletion-zone radii proposed b
Rikvold and Gunton are difficult to analyze at these lo
volume fractions. This is so because it is not possible
place a fixed number of particles with large depletion zo
in a finite cluster, owing to the fact that the depletion zo
for a particle at a low volume fraction is large according
the expressionVv

21/321.
Coarsening systems evolve in time through dissipation

excess interfacial free energy. The smooth dissipation of
terfacial area (Sv5( i 51

N Ri
2) can also be assigned some k

netic descriptions as in@3#, and as shown in Fig. 7 from
simulations. The total interfacial area, being a smooth qu
tity as opposed to fluctuating average quantities, even
finite clusters, can readily be associated with a rate cons
From Fig. 7, we see thatSv;t21/3. The rate constantKsv

,
which is the slope of the plot, also increases with volu
fraction as shown. The ratio of the slopes

FIG. 6. Influence of depletion zones on deviations in coarsen
rates from TLS.
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Ksv
(0.2)/Ksv

(0.1)5Ksv
(0.1)/Ksv

(0.05)51.860.12. This
result is in agreement with the theory by Marsh and Glic
man @3#. Their theory predicts an almost linear relation b
tween the interfacial area rate constants and volume fract

Influence of cluster shape and periodicity

The distribution of particles in a periodic array of cel
was studied in an attempt to investigate periodic bound
conditions and edge effects, which are known to impose
another coarsening length scale corresponding to the siz
a unit cell in the array. We used the method outlined
Voorhees and Glicksman@10,11# in order to investigate the
effect of periodicity on the kinetics of clusters. We carrie
out a simulation of the diffusion fields for the case of 1
and 1150 particles per cell in an array of 125 cubic cells. W
specifically solved the multiparticle problem to monopo
order in the volume fraction range of 0.01 to 10213. The
problem formulation involves defining a nondimensional l
tice translational vector given by

r l5ua1vb1wc, ~56!

whereu,v,w are integers anda, b, andc are the translationa
vectors of the lattice. By defining a set of basis vectors

r i5a ia1b ib1g ic, ~57!

one can translate the monopole sources and sinks to an
the cells. Hence

f~r !5f`1(
r l

(
i

N8 Bi

ur i1r l2r u
, ~58!

whereN8 is the total number of independent sources in
basis. The lattice sums appearing in Eq.~58! can be conver-
gently summed using Ewald’s method. The details of
application of the boundary condition and the evaluation
the sums are well laid out in@10,11#.

The deviations of the coarsening rates from TLS in Fig
for the periodic array are found to be less than those for
spherical cluster and the perturbation result by about 10

g

FIG. 7. Time dependence of interfacial area per unit volume
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This marginal decrease in the absolute value is due to a c
ter shape effect. Even in this case, bothVv

1/2 andVv
1/3 depen-

dencies of the deviation are observed. The rollover volu
fraction depends on the number of particles in a unit cel

Vv* ;
1

12n2
,

as opposed to (1/3n2) found for the case of a spherical clu
ter. This difference is due to an edge effect, which is m
pronounced in single spherical clusters. The particles clos
the surface of the spherical cluster have fewer neighbor
all directions than those deep in the interior. The effect
number of particles diffusionally interacting in the cluster
reduced and hence there is a slight departure from the
diction from Eq.~54!, which does not account for any edg
effects. We expect cluster edge effects to be less impor
for periodic arrays of clusters. The rollover volume fracti
for periodic clusters (1/12n2), as expected, is closer to th
theoretically predicted value of (1/27n2). Hence, periodicity
does not significantly alter the volume fraction exponents
coarsening.

V. CONCLUSIONS

The snapshot numerical calculations presented here s
as an efficient method for computing the coarse-grained
constants of finite clusters of coarsening particles at low v
ume fractions. The use of a large number of realizatio
significantly reduces fluctuations from the mean. In fin
clusters the leading-order correction to the coarsening
from TLS theory isVv

1/3 as stated in@14#. The rollover vol-
ume fraction between the volume fraction exponents 1/2
1/3 at which the Debye screening distance becomes com
rable to the cluster size depends on the number of parti
considered. The dependence being 1/n2 suggests that large

coarsening systems should not exhibitVv
1/3 behavior. The

simulations of the 3162 particles just reiterate this statem
The difference of Vv* 51/27n2 and Vv* 51/3n2 between
theory and simulations indicates some edge effect. Inclus
of dipolar interactions becomes significant beyond a volu
fraction of 0.01, with further deviations from Debye scree
ing of the orderVv . The investigation of the rollover poin
from the Vv

1/2 behavior to linear behavior requires more r

FIG. 8. Influence of cluster periodicity on deviations in coa
ening rates from TLS.
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bust numerical methods. Further investigations of the dep
dence of the rollover point on the number of particles need
be based on simulations of 10 000 particles and more.

At higher volume fractions spatial correlations begin
develop, and comprehensive time-dependent simulat
yield higher coarsening rates than those from correspond
snapshot simulations. The ensemble averaging overgrowing
particles alone is well justified heuristically by theB(r) vs r
plot. Other physically valid types of averaging such as s
face area weighted averaging can also be used. The re
thus obtained, however, are not expected to be significa
different from those presented here. The perturbation the
results of Fradkovet al. compare favorably with the direc
time-dependent simulations reported here.

The effects of periodicity and cluster shape do not infl
ence the volume fraction exponents of coarsening, but o
alter the absolute values of the coarsening rates. Peri
arrays tend to reduce the cluster edge effects. The sc
particle size distributions from snapshot simulations are
ferent from those predicted by time-dependent simulatio
Spatial correlations, not incorporated into the snapshot
culations presented here, can have an influence on vol
fraction exponents at higher volume fractions.

Our simulation results for the interfacial area coarsen
rate confirm thatKsv

depends almost linearly on the volum

fraction at lowVv . The nature of the time dependence f
the coarsening of interfacial area, discussed by previous
searches@37,38# is in agreement with that reported here.

Stochastic aspects of the problem can be investigated
considering the noise-functional nature of theB(r). One can
incorporate this information into the Fokker-Planck equat
as done in@39# for infinite systems simplified by hierarch
equations. Preliminary calculations suggest that noise c
acteristics are considerably different in the early and l
stage of phase separation@31#. Such noise effects can als
help quantify important fluctuations in finite clusters. As e
pected in finite clusters, fluctuations and departures fr
continuum theory predictions may decrease with an incre
in the number of particles in the cluster.

Future simulations using multipoles may incorpora
higher-order terms such as quadrupoles, etc., at volume f
tions higher than discussed here (Vv>0.3). In this paper,
particle shape change or centroid migration due to inclus
of dipole terms has not been considered in detail. Some
searchers@15,37# have suggested that particles tend to m
grate when surrounded by a nonspherically symmetric di
sion field, in order to remain spherical. The inclusion
quadrupole terms, however, would require consideration
shape change of particles. Future directions in simulati
should also focus on structure factor development@32# and
the effects of thermal noise associated with capillary p
nomena.
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