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The problem of diffusional interactions in a finite-sized cluster of spherical particles is studied. Simulations
of diffusional interactions with size distribution and volume fractdp, as input parameters, referred to as
snapshoftstatig simulations, are compared with dynanitne-dependentsimulation results. The precise size
distribution information in the snapshot simulations is obtained on the basis of a perturbation technique
proposed recently by Fradkat al.[Phys. Rev. 53, 3925(1996]. Robust iterative solution schemes for the
quasistatic diffusion equation facilitate investigations of coarsening systems comprised of one million particles
at ultralow (10 *3) to moderate0.25 volume fractions. The objective of carrying out simulations at such low
volume fractions is to analyze the first-order volume-fraction-dependent correction to the effective coarsening
rate predicted by the Todes, Lifshitz, and SlyoZ@LS) theory at infinite dilution. When volume fraction is
considered as an input parameter, the deviation of coarsening rates from that of the infinite dilution limit of
TLS varies asi/V, for a finite cluster and/V, (Debye screeningfor an infinite system. Accurate numerical
investigations of the rollover volume fractiok’{) above which thé/V_U behavior changes tdv_v showed that
V* varies as1~ 2, wheren is the number of particles in the spherical cluster. The deviation of coarsening rates
from TLS observed from dynamic simulations agrees with that predicted by snapshot simulatiohs for
<0.01. The dynamic results are higher than the snapshot resuli¢,fe0.01. The coarsening rate of the
average particle can be calculated directly from dynamic simulations and indirectly from snapshot simulations
by a perturbation relation. A different type of snapshot-ensemble averaging is suggested on the basis of the
functional nature of the individual particle monopole source or sink strengths. Dynamic and snapshot simula-
tions with dipoles were carried out up to a volume fraction of 0.25, and departure from Debye screening
behavior was observed. The inclusion of dipole terms affects the deviations noticeably only above a volume
fraction of 0.1.[S1063-651X98)02208-9

PACS numbds): 82.30—-b

[. INTRODUCTION ening phase has been investigated through mean-field theo-
ries[4—7] and statistical field theorid$,9] and by numerical
Diffusional coarsening represents an important kineticsimulations/10—12. Marder’s theonf13] yields a rate con-
process in the late stage of phase separation. This procestant at a particular volume fraction that is higher than those
characterizes the microstructural evolution of dispersed prepredicted by other theories. The analytical theory of Marqu-
cipitates in a matrix phase. The asymptotic limit of this evo-see and RosE8], based on the diffusion analog of Debye
lution is described by the theories of Lifshitz and Slyogd}y ~ screening for infinite systems, leads to deviations of coars-
and Todes(TLS) [2]. These theories, however, describeening rates proportional th_U. On the other hand, several
coarsening at infinitesimally low volume fractions. At finite other numerical analyses of finite systems clearly show that
volume fractions, there is a deviation in the average coarserihe relative change in the rate constant is proportional to
ing rate from that of the TLS theory. The increase in coars3/V,. A recently published paper by Fradkov, Glicksman,
ening rates is expected because the TLS theory does not taked Marsh[14] shows the existence of both exponents of
into account any interactions among particles. Experimentgolume fractions, using numerical simulations of a finite
have shown that as the volume fraction increases, the ampléluster of particles. They specifically solved the quasistatic
tude of the temporal power law for the average patrticle sizediffusion field for a finite cluster of particles with the size
i.e., the rate constant, rises. The particle size distributiomistribution and volume fraction as input parameters. This
function becomes broader and more symmetrical than thdype of simulation, also referred to as snapshot simulation, is
predicted by the TLS theory. The concentration gradient atess time consuming than the conventional time-dependent
the particle/matrix interface is expected to increase progressimulations. Their work, however, had the limitations of
sively with volume fraction. It has been established that thecomputing the behavior of clusters with less than a thousand
exponent of the temporal power law remains unchanged at particles with limited statistical samples. This paper extends
nonzero volume fraction, but the rate constant incref8es their perturbation theory and simulations to larger systems
The influence of a nonzero volume fraction of the coars-and larger ensembles to determine accurately the rollover
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volume fraction at which diffusional interactions of the order n AB. n 1

of the diffusion Debye length become comparable with in- d(r)=> —t+ > )\di-V(—
teractions of the order of the cluster size that characterizes =1 r=nl = [r=ril
the spatial extent of the cluster. Further, in this paper we alscf_

report time-dependent simulations in the volume fraction hhefm(?ncl)gole strengthg’s, ;he diE‘)le strengf?_hd_i’s, a”db
range 102<V,<0.25 and compare the results with those; € arlled po'tentlﬁkﬁm ﬁre tbe “3 nown ‘éc_’? |C|er]1t;sht0 eb
obtained from snapshot simulations, etermined using the other boundary conditions of the prob-

The numerical simulations by Akaiwa and Voorhées] lem. The assumption of a quasistatic diffusion field leads to

show spatial correlation effects on coarsening of particle§he following time rate of change of the particle radius:
placed in a periodic array, with or without solute depletion oNDncB.O)
zones. Although experimental measuremefi$,17] of v(R)= *7
structure factors and spatial correlation functions have not Ri
directly established the presence of solute depletion zones, ) - o ) N
some researchef$8—20 have attempted to reproduce struc- WhereDo is the diffusion coefficient and, is the equilib-
ture factors by assuming that particles are surrounded by @um solubility. The size distribution functiof(R,t) fol-
spherical depletion zone. Krichevsky and Stavg2l] ex- lows a Fokker—PI'anck—type equation in size-time space. Here
perimenta”y estab”shed that the probab”'ty Of f|nd|ng we dO not C_OI‘ISIder the effect Of n0|Se-Or reS|dL.|a| matrix
smaller particles near larger ones is greater than that of fincgupersaturation, and thus the conservation equation may be
ing smaller and larger ones near each other. Recently, tr@PProximated as
same authorf22] also discuss the direct correlation and me-
dium polarization effects based on their experimental inves- er I (R)F) =0
tigations on two-dimensional microstructures comprised of a at IR '
crystalline phase dispersed in a continuous melt phase.

This paper is Organized as follows. In Sec. I, we describe The unknown size distribution function is normalized as
the mean-field formulation of the problem of coarsening of
spherical particles to dipolar order. This is followed by Sec. wa(R t)dR=N @
lll, wherein we present some kinetics of finite coarsening 0 ' .
clusters and briefly discuss the perturbation theory that forms
the basis of the snapshot simulations. In Sec. IV, we describehereN, is the number of particles per unit volume. With
in detail our simulation techniqugsnapshot and dynanjic this normalization the volume fractiow, is defined as
and also present our analytical findings as regards quantities

té.. (4

©)

(6)

of physical interest. The words “particles,” “droplets,” and _Am (= 3
“precipitates” are used interchangeably throughout the pa- sz? 0 F(RORR, 8)
per.
hence
IIl. MEAN-FIELD APPROACHES
a
The description of isothermal coarsening is given in terms Vo= N,(R®). €)
of a dimensionless concentration potentid),that satisfies
the Laplace equation The diffusion potential at a particle-matrix interface arising
from the self-field and the fields of other particles can be
VZ¢=0. (1)  expanded in a Taylor seri¢83] around the particle center as
The boundary conditions at the surface of iltle particle s AB; «, M
having a radiusR; are specified through the Gibbs-Thomson R b + et R H Vo + = ‘Rit-
local equilibrium relation
+ (higher-order terms (10
A
¢izﬁ’ (2 For Eq.(10) to possess solutions for any particle and direc-
i tion in space, we require for the scalar terms
where\ is a capillary length defined by )N AB;
==t ot o, (13)
Ri Ri
_,
A= 2kB_T' ) and for the vector terms
Here,vis th_e specific interfacial free energ_gl, is the molar VX + }‘_g' —0. (12)
volume, kg is Boltzmann’s constant, and is the absolute Ri

temperature. The solution to the Laplace equaftbe exte-
rior Dirichlet problem) to dipolar order fom particles can be Here, ¢ is the potential created by all other particles at the
represented as center of theth particle and is given by
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n

\B; ik 1
pr(n= 2 > ?\dj'V(—) 13
i =l A [rj=ril
and

n n

AB; 1
Vorn= > Vo ——+ > xdj-vv(—).
A -l AR Irj—ril

14

Further, for a conservative coarsening system, strictly in the
asymptotic stag€éagain neglecting any residual supersatura-
tion) the volume fraction constraint over the dispersed phase

may be written in integral form as

A7 (= JF(R,t)

3 =
3 pr R°*dR=0.

(15
0

Equation(15) can be written for a discrete system of par-
ticles as

n
> B;=0.
i=1

(16)

The TLS limit of the same problem attributes an infinite
extent to the diffusion field of a single particle, thus giving to
monopolar order the analytic form

)

whereR* is the critical particle radius, the interface potential
of which matches the far-field potential and is given by

R;

Bi:(l_R_* 17

R*=N¢.,. (19
Todes introduced a dimensionless variable transformation
=R/R*. The dimensionality of diffusion-limited coarsening
implies that kinetically the critical radius behaves as

R* = a(2ADoco2t) 3, (19

where a is a dimensionless kinetic coefficient that can be

determined from the Lifshitz and Slyoz%] stability analy-
sis. Todes also suggested a family of self-similar solution
for the distribution functior-(R,t), given by

N, (t)

F(R,t)= R*—(t)

f(p,a). (20

Substituting Eq.(20) and B™S=(p—1) into the conserva-
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for the time-independent part of the size distribution in the
TLS case. Here we have treatBdas a continuous function
of p. Note that in[14] the equation corresponding to Eg§2)
has a typographical error.

The stability argument of Lifshitz and Sloyozpi] states
that for the size distribution to be self-similar, there exists a
maximum particle radiug™® in p space for which the time
rate of change i space follows,

dp
a0t maX—O (23
P
and
d dp
3 Gt 2

The above two conditions can also be restated in terms of
the denominator of Eq22), D= (3/a®)(1—p) + p°. Lifshitz
and Slyozov stated that the only stable solution of the conti-
nuity equation corresponds to a valueagfwhich makes the
positive roots of the denominator coincide. This implies that
aTLs™ (2/3)2/3-

There are different approaches to incorporate the effect of
volume fraction on coarsening. Some researchers have re-
stricted the interparticle spacing to the average interparticle
separation. In systems that are not sparse, direct screening by
nearest neighbors becomes important, and closest particle
correlations begin to develof8]. Marqusee and Rog$]
restricted the extent of the Laplacian field by taking into
account screening in a two-phase medium consisting of a
distribution of sources and sinks. This leads to the Poisson
equation for the spatially coarse-grained background diffu-
sion potential, namely

V2¢p=—4ma, (25)
where the source or sink densityis given by
a(r)zf [A\—R¢(r)]JF(R,t)dR. (26)
0

The background potentialp,, has been replaced by the

%oarse—graineeb, giving the linearized form of the Poisson-

Boltzmann equation, also known as the Debyeskél equa-
tion:

tion equation and using separation of variables to solve the

eigenvalue problem with the help of E@®), we get

of
p[(3la®)(1=p)+p?] %+[—4p3+(6/a3)](1—p/2)f=0-
(21
This can be rewritten in separated form as
df —4p3+(6la®)(1—-p/2) d
df _ —4p°+(6la®)(1-p/2) dp 22

f (Bla®)(1-p)+p® p

VZp— k(= ¢.)=0. (27)
In Eq. (27),
k?=4m(R)N, (28)
and
b.=N(R). (29

The Debye-Hukel equation is well known from theories of
ionic plasma and electrolytes. The solution to this equation,
subject to the Gibbs-Thomson boundary condition, is of the
form of a Yukawa potential
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B. A finite system of coarsening particles, in contrast to an in-
L g Hlr-ril g b (300 finite system, cannot shouniformasymptotics, because any
finite coarsening system achieves its end state as a single
. particle in finite time. Finite systems, however, may show
Now theB,’s are defined as intermediateasymptotics only. By this we mean that the
coarse-grained average over time of these cluster parameters
Ri ¢ becomes identical to those in self-similar infinite systems,
N even though the instantaneous values of the time-dependent
cluster parameters may fluctuate. In general, continuum

The coefficientx is the reciprocal of the diffusion analog of coarsening theories yield quantities that are equivalent to the
the screening length. It represents the natural cutoff distanceoarse-grained averages over time for finite clusters. Hence,
for the direct particle interactions via the diffusion field, be-the coarse-grained intensive length scale parameters, viz.,
yond which the particles are isolated from each other by thélr, An, and Ap can be expected to scale with time as
intervening two-phase medium. This, however, is not thePredicted by continuum theories.

same as the diffusion depletion distance proposed by In finite systems, as observed [ii1,26,15, coarsening
Rikvold and Gunton[19] or by Pedersen’s curve fitting Occurs via continuous evolution of particle radii and by the
analysis of SANS datfl8]. The screening length represents discontinuous disappearance of the smallest particles. The
the distance beyond which particles do not diffusionally in-coarse-grained averages depend on both mechanisms. The
teract with each other. Interactions within this distance carPbjective of simulating coarsening in finite clusters is to
be broken down into single-body and many-body diffusionalcompute the coarsening rate. This can be found from the
interactions. In order to incorporate the effect of the volumeslope of the evolution ofR) with time. The coarse-grained
fraction, Tokuyama and Kawasald4] used hierarchy equa- behavior should show smoott’3 behavior, which is in
tions to describe many-body diffusional interactions. Theagreement with the asymptotic power law of continuum
equations they obtained were in general different from théheories. In order to obtain a smooth time dependence, a
familiar BBGKY hierarchy equations for molecular distribu- large number of particles have to be simulated. If the objec-
tion functions[25]. Diffusional interactions between par- tive is to determine the volume fraction dependence of the
ticles in a finite cluster can be represented as hard-sphefverage rate constant of coarsening, then a time-dependent
interactions coupled with solute depletion zords,19. simulation would be needed for an enormously large number
Pedersen specifically modeled coarsening particles a@f particles at different volume fractions. This approach
Percus-Yevick hard spheres encapsulated in a solute depl@ould pose a computationally intensive task. The task would
tion zone of size proportional to the hard-sphere radius itselfpe made considerably easier if the size distribution and vol-
This method precisely described structure factors in sinteringime fraction could be obtained or assuneegriori at each
experimentg20]. The random field cell approach developed volume fraction. The multiparticle diffusion equation could
by Marsh and Glicksmaf] proposed a diffusion depletion then be solved instantaneously to calculate the average rate
distance for each particle as the radial distance at which theonstant of coarsening.

spherically symmetric Laplacian potential of that particle In order to obtain the size distribution at low volume frac-
matches the mean-field potential. This approximation alsdions, one can approximate it as a perturbation of the TLS
suggested a one-to-one correspondence between partic@g{ribution. The particle growth rate at finite volume frac-

¢<r>=i§lx

[r—ril

(1+«kR)=B"S(1+«R). (31

and matrix field cells surrounding them. tions can be written as a perturbation of that at infinitesi-
mally low volume fraction as done ifl4] as
[ll. KINETICS OF FINITE COARSENING CLUSTERS v(R)=v7s(R[1+€(R)], (33

The length scales of a finite coarsening cluster, i.e., a i ) .
finite number of particles confined to a finite volume, areWhere €(R) is a small perturbation. If the perturbation is

important factors in determining the kinetic properties of Tom Debye screening, thes(R) = xR. Marqusee and Ross
coarsening systems. The four important length scales in E] used the same stability analysis as Lifshitz and Slyozov
finite coarsening cluster af@4] the size of the particles, as fto obtain the kinetic constant corresponding to Debye screen-

characterized by the average radilg~(R); the interpar- "9 @S

ticle spacing as characterized byy~N;*; the Debye _ 12, (i

. . . V,)= 1+0.740/;“+ (higher-order termyg,
screening radius as characterized by~ «~1; and the ex- a(Vy)=amd v+ (higher-order ter (34
tent of the total coarsening system, defined for a spherical

cluster ash =(3n/47N,) %, wheren is the number of par- \wherea, s=(2/3)2°. Fradkovet al.[14] used the same sta-
ticles in the cluster. It is assumed that the cluster is |Oca.”yo|||ty ana'ysis to arrive at a more genera' perturbation result

homogeneous and spatially isotropic, and that the overalis follows: If the denominator in Eq22) is perturbed, then
size of the cluster is time independent. Therefore, one can

define the volume fraction of a cluster of particles to be D=p3-B(p—1)(1+e), (35

n where 8=3/a®. The eigenvalue fo3 and the maximum
E (4/3)7TR? value of p can be found for solving the equation $2t=0
-1 (32) andD’=0 [14]. To obtain first-order corrections to the ei-

V,=—5—3.
" (AR (A genvalue, we write
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B=PBrst B (36)
and
p=prLst p. 37
Retaining first-order terms we have
D= — 5B/2—27¢/8=0, (39)
wherepT&=3/2. This results is3= —27¢/4. Hence
a=am g 1+(3/16Pe(Ruz ] (39
and
P pTE+ (3/8) €, (40)

wheree’ = del dp. Fradkovet al. used a snapshot simulation

technique that indirectly assumed é&p) value for each par-
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cence is diminished by the effects of surface deformations
and flattening of approaching interfaces in the late stage of
phase separation.

IV. NUMERICAL SIMULATION AND RESULTS

In this section we solve Eqgl) and(2) numerically for a
dispersion of coarsening spheres with two different approxi-
mations for the potentialy: (i) a monopole representation
and (ii) a monopole plus dipole representation.

Snapshot simulations were done by choosing a particular
size distribution at a given volume fraction and solving for
the diffusion field of the given number of particles in the
spherical cluster of radius,,;. The geometry was created by
assigning positions to the particles using the procedure of
random sequential addition of hard spheres into a spherical
cell [29]. Each particle was assigned a radius randomly dis-
tributed around the average value of the radiRs=\r. We
specifically chose the TLS and rectangular size distributions

ticle in the fi.nite cluster and then aver'aged the perturbation8f different widths. The numerical results obtained were rela-
over the entire system of particles, using the assumption th%’&/ely insensitive to the size distribution used f@;<0.01.

1 m

%_hﬁ. g_lob?l aVﬁragﬁe(p)> refle((:jts t?ehbehaworr] Oé(pfax)' The ratio Ag/Ayy as defined in the preceding section was

IS implies that the magnitude of the growth rate for ee.‘cr\/aried to obtain different volume fractions according to Eq.
particle size class in a cluster is L'mlformly' magpnified reI_atlve(26)_ We maintained the same relative particle positions over
to th_e TL.S v_alues. A more consistent refmement to this aPihe range of volume fractioW,<0.01, but proportionally
proximation is presented in t_he next section af_‘d yields mor%hanged the interparticle distances and thus changed the size
accurate values foe for a given volume fraction. In this of the cluster. For higher volume fraction¥/ (=0.10) we
paper, we also extend this global average to several real'z?ﬂrther modify this method as explained later in this section.

tions of the system of particles in finite clusters.

Diffusional interactions in a cluster can be considerablyan
influenced by noise in the system and by centroid migra’[iorb0

of particles. Voorhees and Schaeféi] considered the in-

teraction between a pair of particles with a background po
They computed the interfacial velocities in the

tential ¢.. .
normal direction analytically to dipolar order as
Vi=(1R){ $— IR+ (1IRy— h..)Rp/2d — Ry R,/4d?
X[1R;— ¢+ 3(1L/R,— ¢..)cos 6]} 41

In Eqg. (41, R; and R, are the particle radii and is the
interfocal separation as defined [27]. The cosf term

clearly suggests that the particle translates infthes o=k
direction at a speed

Vi=—3/4d[1-R,¢..]. (42)

Inserting a solution of the form of Ed4) into Egs.(1)
d (2) leads to[4n+1]X[4n+1] linear equations. The
ndition number for this problem is large, but can be re-
duced by rewriting the problem as two systems[dh]
X[4n] linear equations. Furthermore, each of these smaller
systems is positive definite and was solved iteratively with a
preconditioned conjugate-gradient method suggested by Mc-
Fadden and Greengaf80]. The relative error was set to a
value of 104 at V,=0.10 and progressively reduced at
lower volume fractions to 10’ at V,=10" !4 Calculations
involving n monopoles only led to systems pfi+1]X[n
+1] linear equations and were solved in a similar manner.
The number of realizations used was chosen so that an en-
semble of at least a million spheres was involved in the cal-
culations at each volume fraction studied.

Dynamic simulations were performed by choosing an ini-
tial size distribution and an arbitrary number of particles,
solving for the diffusion field and subsequently time march-

For ann-particle system, however, the leading-order term ofing the radius of each particle according to Eg). In order

the migration velocitie$13] is

_di

= (43

to account for particle disappearances, we chose a cutoff
radius, below which a particle is considered to be nonexist-
ent. Time marching was done to obtain a final desired num-
ber of particles coarsening in the asymptotic regime. The

above procedure was repeated for several initial realizations
Migration of particles in a cluster can result in the develop-and the results averaged out. The method of numerical solu-
ment of time-dependent correlations. Higher-order interaction was the same as that used for the snapshot simulations.
tions of particles result in shape change, particularly flatten- We performed the dynamic simulations with a particle
ing of approaching interfaces. The influence of cutoff radius of 0.05 times the maximum radius and with
hydrodynamic interactions on the coarsening rate of dropletd500 particles in the initial ensemble. Time marching was
combining through diffusive coalescence was studied by Sigelone to obtain an average of 500 particles coarsening in the
gia[28]. It was concluded that for low droplet volume frac- asymptotic regime. The asymptotic regime is characterized
tions the evaporation-condensation mechanism proposed Hy the cubic power-law behavior of the average particle ra-
Lifshitz and Slyozov is dominant. Further, the rate of coalesdius of the cluster, such gR)3~t, as shown in Fig. 1.
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FIG. 1. Asymptotic power law of coarsening.

1.5
In order to understand the basis of the snapshot simulation

technique, we focus attention on the quantityThe devia- FIG. 2. Functional form ofB(p) showing noise distribution

tion A of the coarsening rate from the TLS limi/(=0) is  around the least-squares polynomial Btp) for p=1 is almost

given as linear forV,=0.2.n(t) denotes the number of particles in the clus-
ter.

(v(RV,))—(v(R0)
(v(R,0))

A(V,))= (44)  crease uniformly in magnitude for all radii values at a given
volume fraction. This is equivalent to assuming thatBig)
vs p plot of Fig. 2, which is a straight line for the TLS
theory, remains a straight line and that only the slope
(WR))Y—{(vrs (vrse(R)) changes. There are two fixed points in this plot B(p):
(U7Ls) = (v1Ls) (45 _B(1)=0, defining the critical_ particle size, a_rB(0)=—_1, _
independent of volume fraction, caused by field localization
and noting that 1 s andv (R,0) have been used interchange- for disappearing particles that approximate monopoles. Thus
ably. The right-hand side of the above equation can also bthe functionB(p) becomes curved for shrinking particles in
thought of as an ensemble average of the volume fractionrder to have a larger slope nga# 1 yet pass through these
induced perturbations in the growth rate of the particles frontwo fixed points. Coarsening theories and simulations
a known set at another volume fraction. This quantity can b¢10,11,3, however, have shown that th&p) function re-
calculated at an instant for a system of coarsening particlesmains nearly linear for growing particlesp£1). Thus
with a given size distribution and at a known volume frac-{e(R)) is essentially constant forp&1), and a more reli-
tion. In principle, one can substitute the TLS distribution able estimate of this parameter used to deterniifi¢,) can
with any other known distribution at a nonzero volume frac-be obtained by averaging the individuaVvalues only for the
tion and ensemble average the perturbations at that volungrowing particles in a given cluster.
fraction. If the deviationA from Eg. (44) is computed at different

The valueA(V,), thus obtained, is substituted into Eq. times for a given volume fraction, we can study the time
(39) and hence the ratia/ a1 g can be calculated. The ab- dependence dk(V, ;t). This quantity will also show differ-
solute rate constant of the average particle is then ent branches of constant particle number with vertical jumps
associated with particle disappearance. A smoother depen-
dence can be obtained by coarse-graining the data. The
coarse-graining was done by binning th€V, ;t) data in
time and representing each bin by its average value. In doing

Hence K/Kys=(alars)*=[1+(3/16)*A1® can in  so, we are averaging over the different branches of constant
principle be calculated for a given volume fraction once theparticle number and the vertical jumps from each branch. A
deviationA(V,) at that volume fraction is known. Hence- comparison of coarse-grained valuesAqfV, ;t) calculated
forth we unambiguously refer tA(V,) as the deviation in  for an average ovaall particles, withA obtained by averag-
coarsening rates, and t as the coarsening rate of the av- ing over growing particles only, in Fig. 3, clearly suggests
erage particle. The value & can also be obtained directly that the average over growing particles alone is more stable
from the slope of théR)? vst plot in a time dynamic simu- and also closer to the snapshot values calculated by the snap-
lation. shot simulation technique.

The principal assumption made here is that the global If A is given a stochastic description, then we need to
average(e(R)) reflects the behavior 0&(R,). This as- associate a finite mean and variance with it. From Fig\ 3,
sumption is necessary since a finite coarsening cluster doésr p=1 has the snapshot value as its mean. The next objec-
not have a statically valid representation of enough particlesive now is to find a way to assign its variance appropriately.
atRnax- The definition ofA(V,) in terms of a global average In this paper, ensemble averaging of these snapshots was
over a large statistical ensemble of particles makes it posised to get its variance. Although this serves our current
sible to get accurate estimates of coarsening rates. Usinggurpose, a better estimate of the variance can be obtained by
single global average(R) implies that theB; values in-  solving a non-Markov type Fokker-Planck equation for the

The above definition originates from averaging E2p) as

K=a3=%(R*3). (46)
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' T ' ' 3 JoR'F(R1)AR

Averaged for 0<R<Rmax =

—_ vv=0.1 Averaged for <R><RsRmax ] i < R> 'N v ’ (48)
3 — = - Snapshot for <A><R<Rmax ]
[=4 . . .
| 3 For the TLS distribution,
5 ]
8 P R T A=0.695/22, (49)
8 iy et e e T T D M e T

Pl L I . L . .« . 1 . . . . .
= ] The above equation is only a first-order approximation at
<> g nonzero volume fractions, given that the size distribution it-
<

T self is broader than the TLS distribution. Strictly, one must
o - use Egs.(33) and (34) and solve for the size distribution
| ! T from Eq. (21). Marqusee and Rogs8] have obtained such

600 800 1000 1200 corrections to the TLS size distribution by using the diffu-
time (arb. units) sion analog of Debye screening at much higher volume frac-
tions

FIG. 3. Coarse-grained deviation from TLS vs time. Coarse Sﬁapshot simulations were carried out witchosen to be
graining was done by binning the data points and representing eac_[b

bin by its time average. The snapshot value was calculated from the 0, 316, 1000, and 3162, limited to monopoles in the vol-
y IIs ime average. 'ne snap time fraction range 10t*<V,=<0.01. The number of realiza-
known size distribution a¥,=0.10. v

tions were chosen so as to statistically simulate a total of a

il h E d Tok h million particles. Such large ensembles of particles had to be
particle growth rates. Enomoto and Tokuyari&l| have realized in order to reduce the varianceAnWe found that

used a similar method for studying phase separation. Y&he deviation of coarsening rate from TLS showed/#’
another approach is to obtain the noise functional relation;

ship for B(p) vs p, with or without volume fraction as a bghawor at low voI_ume fractions gnd\_lag/z dependenc_e_ at

parameter, and employ stochastic decomposition technique@.glher volume fralctlons, "i‘s ShOWP in Fig. 4. The transition or

Preliminary studies confirm the non-Gaussian nature of théollover_from thes to the ; behavior was f°“.”d to oceur at

variance of theB(p) data from the best-fit polynomial func- Ve » Which depended on the number of particles as

tion (see Fig. 2 Such studies, however, do not affect the 1

volume fraction exponents of coarsening rates and shall not Ve (50)

be treated here. ° 3n?

The deviations in coarsening rates were computed in the

volume fraction range I0M<V,<0.01. The deviation val- TheV} for the 3162 particle case was graphically estimated

ues were found to agree with the Debye screening results & the point of intersection of a line of slogethrough the

Fradkov, Glicksman, and Margh4], who used a first-order point (10~*4 A(10™%%) and the lineA =0.695/>?in Fig. 4.

perturbation analysis to arrive at the expression The number of particles in the cluster and the corresponding
number of realizations used for averaging are also shown in

1-u 3\ 12 Fig. 4.
A=(—l) (—) Vi’z_ (47 In order to understand why the rollover behavior occurs,
H1™ f-2/ \ K3 we look at the expressions for the cluster size and the Debye
length,

Here theu;’s are theith moments of the size distribution

. . . . ; 3\ \ 172
with both shrinking and growing patrticles taken into account, An=3-172 (R°) —1/2
and =3 wmy ) Ve 5D
10 pr—r—T—"T—T—TT—T—r— —— — T
E i ‘ P2 ..J
|+ 316/3180 1 e
» * 100/10000 A
10°E"| ——3162/1000 *
E| ¥ 1000/1000 e E
o R Debye Screening » ¥ ]

107 : I ¥e) FIG. 4. Deviations in snapshot coarsening rates
~ .o ¥ at low volume fractions. The numbers such as
Z . iG\ 3 316/3180 mean that diffusion fluxes were com-
< v » " puted for 316 particles in a single cluster and the

107 3 L S S V ~1/n2 e T A X

A Y, results statistically averaged over 3180 realizations
E ot and so on. The open circles indicate the rollover
5 points where the slope changes from 1/2 to 1/3.
10°E 3
£ i
106 PP S S PR S
-14 -12 -10 -8 6 4 2 0
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and 25
At0t= n1’3(R3)1’3\/\71’3. (52) X V,=010
2|
The above equations show that the Debye length grows + V=020
faster than the cluster size with decreasing volume fraction.
This implies that at some small volume fractiufj , the Ap sf i

exceeds the cluster size, and hence diffusion Debye screer
ing is precluded. At such low volume fractions, one can es-
timate the diffusion fluxes by considering the monopole

f(p}

+x

terms only, and we obtain * N
B,—B Rls B ” ‘
i TLS )\ j:1¢i |rJ_r|| . . ES s
0 i3 L L L )
The right-hand side of the above equation can be estimateqsy °~  °* * * ° 5 @ e e e
using the appropriate length scales defined in Sec. Ill. Hence
3.5 T
Bi—Bris _ Ar _ <R>1/3 1/3 [ Marsh-Glicksman
Tr. . A T 3 . X 4 Present Snapshot resuits
BTLS AN (R > v 3-0: ¥ Present dynsmic results
) o Akaiwa & Voorhees =2
This shows that for extremely sparse clusters, the leading-
order deviation from TLS kinetics goes &%, Thus, the ¥ 2.3
rollover behavior occurs at some volume fraction for which $
the interactions at the order of the cluster size become com 2.0
parable with those at the order of the Debye length. Equating
these interactions gives the approximate condition 15
Ap(n,V)~A(n,V5). (53
1.0
0 0.06 04 015 0.2 025 0.3 0.35
Hence (b) Volume Fraction V,,
1
VE~ —. (54) FIG. 5. (a) Scaled particle size distributiob) Comparison of
2/n coarsening rates at different volume fractions. The snapshot results

. . . are based on averaging 0 i ticl lone.
The difference in the constants appearing in E&4) and veraging over growing paricies alone

(50) can be related to an edge effect, which is precluded in
the length scale argument. An edge effect may be inherent tdéme-marched system of particles in a finite cluster at a given
finite clusters, since particles close to the outer regions of thgolume fraction, one can estimate the deviatidnThus, the
cluster have fewer neighbors than those deep within the inaverage coarsening rate constant at lower volume fractions
terior. We discuss this subtle effect in the subsection on pesan be estimated accurately by way of snapshot simulations,
riodic clusters. avoiding tedious dynamic simulations at lower volume frac-
For volume fractions greater than 0.01, one expects th&ons.
deviation values to gradually become sensitive to the nature In order to check if such a conclusion can also be reached
of the size distribution and spatial correlations developedit volume fractions higher than 0.01, some dynamic and
through time evolution. In order to test the validity of the snapshot simulations were carried out in the volume fraction
snapshot simulation technique f&f,<0.01, a cluster of range 0.0¥V, <0.2. Specifically, we considered an already
2000 initial particles av,=0.02 was time marched until the time-marched cluster of 500 particles &,=0.2, and
asymptotic stage of coarsening was reached with 500 pachanged the ratid g/ A to obtain a cluster of 500 particles
ticles remaining in the cluster. At this instant the particleatV,=0.1. The radii of the particles were distributed around
positions and radii were recorded. Now the ratig/A for ~ the average value of the radius in a manner similar to that
this cluster was suitably changed to obtain a cluster of 50@sed in the former volume fraction and assigned the same
particles at lower volume fractions in the range i8<V, relative positions as before. In doing so, we perturb the size
=<0.01. The deviatiom\ at each volume fraction was calcu- distribution and recalculate the corresponding diffusional
lated from Eq.(44). Comparison of the deviations calculated fluxes consistent with Eq45). Figure %a) shows the scaled
in this manner with those calculated by directly time march-particle size distributiorf(p) at V,=0.2 and 0.1, obtained
ing the cluster at each volume fraction yielded good agreefrom time dynamic simulations. The snapshot simulation
ment. More precisely, the dynamic simulation predictedtechnique assigns the radii for particle3/gt=0.1, according
A(0.01)=0.0698+0.0015 whereas the snapshot simulationto f(p) at V,=0.2, but taking into account the resultant
result wasA (0.01)=0.0688. Both these values are close tochange inp™® This procedure follows the methodology of
the perturbation theory value of 0.0695. At much lower vol-the perturbation technique. The changepl?* is recorded
ume fractions, the agreement was even better. Thus, givenautomatically in a snapshot simulation. This is true because
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we move from one volume fraction branch of tBess p plot We also performed snapshot simulations including dipole
to another branch corresponding to a lower volume fractionterms in the potential formulation for clusters containing 100
The almost linear nature of thB vs p curve (Fig. 2) for  particles to determine the relative significance of dipolar in-
growing particles shows that the kinetics of the growing parteractions compared to monopolar interactions at low volume
ticles is well captured by the snapshot simulations. The onlyractions. Again at low ranges of volume fraction the expo-
significant errors in the snapshot simulations would be thosgent of the volume fraction wa$, and at higher values it
arising from time evolved spatial correlations and the precis&Vas found to be;. o

nature of the size distribution, both of which are unique to Theidz|polar contributions became significant only when
the asymptotic stage of each volume fraction. The use o¥»=10 " Thus the exponents of the volume fraction do not
different configurations at the original volume fractidh qhange with ”1146 addition of dipole terms in the volume frac-
=0.20 is bound to lead to different particle coarsening rate%!on range 107<V, <0.01. In order to understand the rela-
atV,=0.10. Hence, one needs to carry out some averaginé\./e significance of the dipole terms at \_/olumc_a fractions
overvthe configurations &f, = 0.10. This was again done by igher than 0.01, we performed snapshot simulations of 1000

q tial additi £ th ticles into th articles in a spherical cluster in the volume fraction range
random sequential addition of he particies Into the sam .02<V,=<0.20. Our objective is to calculate the increase in

cluster volume. This averaging can be done over enougfeyiation caused by the dipole terms alone. The difference
realllza.ltlons to obtain a reasonably accurate estimate of th&NHD_AM between the deviations for the case with mono-
deviation A. The calculated value of the deviation was poles and dipoles Xy, p) and that with monopoles only
A(0.1)=0.316. In terms of the average rate constant values(,AM) was computed for 1000 particles. The difference
K(0.1)/Krs=1.77220.033 for a directly time-marched showed av9%8“%%2 dependence at volume fractions close to
cluster, wherea¥ (0.1)/Ky s=1.622 for a cluster that has 2 gng ay0560.02 dependence at volume fractions close to
been snapshot simulated at this volume fraction. If the eng g2 Hence we conclude that the inclusion of dipolar inter-
semble averaging were to be carried out for particles in thetions results in a small positive departure from wéZ
range ¥ p<p™ thenA(0.1)=0.336 and the correspond- pehavior. We also noted that at these volume fractions, the
ing K(0.1)/Ky s=1.696. We believe that the small relative coarsening rates were more sensitive to the size distribution
difference in these values from the snapshot and dynamigsed, in contrast to the relative insensitivity observed at low
simulations occurs because the time-evolved spatial correlaolume fractions. Particle migration rates were also com-
tions at each volume fraction are unique. In other words, thguted from Eq.(43), but the migration neither changed the
local environment in which a particle finds itself is different volume fraction exponents nor other qualitative conclusions.
at different volume fractions. A more detailed explanation ofAt higher volume fractions, however, spatial correlations
this point could be given in terms of structure factors andwere affected by particle centroid migration.
nearest-neighbor distributions, and is part of an ongoing The proposition that the particles themselves are not hard
study to be reported elsewhere. A similar comparison at &pheres but have around them a hard concentric shell is
volume fraction of 0.01 yielded a value 0A(0.01) known to impose another length scale corresponding to a
=0.0698+0.0015 for a directly time-marched cluster and asolute depletion zone. The effect of depletion zones and spa-
value of A(0.01)=0.0687 for a cluster obtained as a shap-tial correlations on the deviations from TLS has been dis-
shot at this volume fraction. At volume fractions beyondcussed by some researchers. Rikvold and Gufi®h pro-
aboutV,=0.1, we expect spatial correlation effects to bepose a depletion zone given %5~ 1. The simulations by
important. At these intermediate volume fractions the coarspkaiwa and Voorhee$15] and the structure factor fits of
ening rates are sensitive to the precise nature of the sizeedersefil8], however, use a depletion zone of 0.5 times the
distribution and its time-evolved correlations. radii of the particles. Pedersen’s work demonstrated that a
In fact, snapshot simulations based on imprecise size disnodel with both particle correlation and polydispersity ef-
tributions at the higher volume fractions have led to deviafects can be used for interpreting small-angle scattering data
tions and average coarsening rates that are much differefiom precipitates in alloys. He used a polydisperse hard-
from those obtained directly from dynamic simulations as insphere model based on analytical expressions by [38]
[32]. Hence, snapshot simulations may not be a reliable toodnd produced good fits of structure factor data usg a
for predicting accurately the coarsening rates at moderateIMard-sphere radius, as one of the parameters. The under-
high volume fractions, especially if the precise nature of thestanding here is that every particle along with its concentric
size distribution and spatial correlations is not incorporatethuter sphere of influence can be characterized by a hard
at the original volume fraction. Nonetheless, snapshot simusphere of radiuR,,s. The corresponding hard-sphere volume

lations result in accurate predictions f9f,<0.01. In Fig.  fraction V" is simply related to the precipitate volume frac-
5(b), a comparison is shown of time-dynamic simulation re-tjon py

sults with the results of previous simulations by Akaiwa and
Voorheed 15] and the random field cell model by Marsh and R.\3
Glicksman[3]. The theory in[3] incorporates a diffusional VU=Vh5/ (_hs)
interaction distance for each particle in a matrix volume that ’

has a certain specified correlation with the particle volume.

The results of this theory are about 20% higher than thén our specific case oR,=1.5R, we haveVU=V23/3.375.
present simulation results. Also, this theory yields’i;? de-  We performed simulations with depletion zones of 0.5 times
pendence forA for an infinite system at low volume frac- the radii and found that thé values from simulations as
tions. shown in Fig. 6 were slightly lower than in the case without

= (59
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FIG. 6. Influence of depletion zones on deviations in coarsening t

rates from TLS. FIG. 7. Time dependence of interfacial area per unit volume.

any depletion zones for the volume fraction range of 0.1 to .
10" The dependence of the deviatianwas still V3 in KSU(O'_Z)/_KSU(O'l): KSU(O'_l)/KSU(O'OS): 1.8+0.12. Th'?

the ultralow volume fraction range arMi’z in the upper result is in agreement W|th_ the theory by Marsh and_thks-
range shown in Fig. 6. The rollover precipitate volume frac-Man[3]. Their theory predicts an almost linear relation be-
tion still depends on the number of particles in the cluster adween the interfacial area rate constants and volume fraction.
V*~1/n?. Thus a depletion zone does not significantly alter o

the diffusional interactions of the order of the interparticle Influence of cluster shape and periodicity

distance as well as the Debye length. The only noticeable The distribution of particles in a periodic array of cells
effect was that the rollover volume fracti®fj is larger than  was studied in an attempt to investigate periodic boundary
that for cases without depletion zones by a multiplicativeconditions and edge effects, which are known to impose yet
factor between 3 and 4. Accurate numerical estimatiow’of ~another coarsening length scale corresponding to the size of
showed that the same factor was 3:33~1.5°. Thiscal- a unit cell in the array. We used the method outlined by
culation needed an accuracy of a very high order. When w&oorhees and Glicksma[i0,11] in order to investigate the
used a depletion zone witR,.=1.8R, we again found the effect of periodicity on the kinetics of clusters. We carried
factor to be 6.1 0.33~1.8%. In order to get more accurate out a simulation of the diffusion fields for the case of 110
estimates, one needs to implement variance reduction tecland 1150 particles per cell in an array of 125 cubic cells. We
niques such as importance samplif@d]. Based on the specifically solved the multiparticle problem to monopolar
present simulation results on slope estimates, we find that therder in the volume fraction range of 0.01 to 26, The
rollover precipitate volume fraction for the case with deple-problem formulation involves defining a nondimensional lat-
tion zones\V* %, is related to the rollover volume fraction tice translational vector given by

without depletion zones ag* ~V*P%/(R,s/R)®. There is,
however, a limit to the size of the depletion zone that can be
used for a given number of particles at a given volume frac
tion in a finite cluster, the limit being that of close-packing in
hard sphere$35,36. The depletion-zone radii proposed by
Rikvold and Gunton are difficult to analyze at these low ri=aa+ Bib+yc, (57)
volume fractions. This is so because it is not possible to

place a fixed number of particles with large depletion zone®ne can translate the monopole sources and sinks to any of
in a finite cluster, owing to the fact that the depletion zonethe cells. Hence

for a particle at a low volume fraction is large according to
1 N’

ri=uatuvb+wc, (56)

whereu,v,w are integers and, b, andc are the translational
vectors of the lattice. By defining a set of basis vectors

the expressioiv;, 13— 1. B,
Coarsening systems evolve in time through dissipation of ()=t > 2 =t
excess interfacial free energy. The smooth dissipation of in- no P

i —sN 2 ; ; : . .
terfacial area §,=2;_;R) can also be assigned some ki- whereN’ is the total number of independent sources in the
netic descriptions as if3], and as shown in Fig. 7 from pasis. The lattice sums appearing in E8g) can be conver-
simulations. The total interfacial area, being a smooth quangently summed using Ewald’s method. The details of the
tity as opposed to fluctuating average quantities, even fogpplication of the boundary condition and the evaluation of
finite clusters, can readily be associated with a rate constanhe sums are well laid out if10,11.

From Fig. 7, we see tha,~t~'°. The rate constark , The deviations of the coarsening rates from TLS in Fig. 8
which is the slope of the plot, also increases with volumefor the periodic array are found to be less than those for the
fraction as shown. The ratio of the slopes spherical cluster and the perturbation result by about 10%.

(58)
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10" ey ‘ ‘ . . . T T . bust numerical methods. Further investigations of the depen-
i  Snapshots: Periodic Arravs 12 dence of the rollover point on the number of particles need to
107 o 125 cells RO S be based on simulations of 10 000 particles and more.

F . o At higher volume fractions spatial correlations begin to
> 1k PR ’ develop, and comprehensive time-dependent simulations
IO S R U S S S yield higher coarsening rates than those from corresponding

3 o0 snapshot simulations. The ensemble averaging gr@wing
10° '_4.1/3..2:'.,, =SSN B PR S o n=tisdical . | particles alone is well justified heuristically by tB€p) vs p
E° plot. Other physically valid types of averaging such as sur-
e BP™ v a—— face area weighted averaging can also be used. The results
\ ' thus obtained, however, are not expected to be significantly

different from those presented here. The perturbation theory
results of Fradkowet al. compare favorably with the direct
FIG. 8. Influence of cluster periodicity on deviations in coars- fime-dependent simulations reported here. .
ening rates from TLS. The effects of periodicity and cluster shape do not influ-
ence the volume fraction exponents of coarsening, but only

This marginal decrease in the absolute value is due to a clug/ter the absolute values of the coarsening rates. Periodic
ter shape effect. Even in this case bwz andv3 depen- ~ arrays tend to reduce the cluster edge effects. The scaled
dencies of the deviation are observed. The roUIIover volumdarticle size distributions from snapshot simulations are dif-

fraction depends on the number of particles in a unit cell adérent from those predicted by time-dependent simulations.
Spatial correlations, not incorporated into the snapshot cal-

1 culations presented here, can have an influence on volume
VA~ —— fraction exponents at higher volume fractions.
12n? Our simulation results for the interfacial area coarsening
rate confirm that(; depends almost linearly on the volume

as opposed to (1) found for the case of a spherical clus- fraction at lowV, . The nature of the time dependence for
ter. This difference is due to an edge effect, which is morehe coarsening of interfacial area, discussed by previous re-
pronounced in single spherical clusters. The particles close teearche$37,39 is in agreement with that reported here.

the surface of the spherical cluster have fewer neighbors in Stochastic aspects of the problem can be investigated by
all directions than those deep in the interior. The effectiveconsidering the noise-functional nature of Bp). One can
number of particles diffusionally interacting in the cluster is incorporate this information into the Fokker-Planck equation
reduced and hence there is a slight departure from the prews done in39] for infinite systems simplified by hierarchy
diction from Eq.(54), which does not account for any edge equations. Preliminary calculations suggest that noise char-
effects. We expect cluster edge effects to be less importanicteristics are considerably different in the early and late
for periodic arrays of clusters. The rollover volume fractionstage of phase separati¢®l]. Such noise effects can also
for periodic clusters (1/1%), as expected, is closer to the help quantify important fluctuations in finite clusters. As ex-
theoretically predicted value of (1/87). Hence, periodicity pected in finite clusters, fluctuations and departures from
does not significantly alter the volume fraction exponents otontinuum theory predictions may decrease with an increase

coarsening. in the number of particles in the cluster.
Future simulations using multipoles may incorporate
V. CONCLUSIONS higher-order terms such as quadrupoles, etc., at volume frac-

tions higher than discussed her€,&0.3). In this paper,

The snapshot numerical calculations presented here serygrticle shape change or centroid migration due to inclusion
as an efficient method for computing the coarse-grained ratgf dipole terms has not been considered in detail. Some re-
constants of finite clusters of coarsening particles at low volsearcher§15,37 have suggested that particles tend to mi-
ume fractions. The use of a large number of realizationgrate when surrounded by a nonspherically symmetric diffu-
significantly reduces fluctuations from the mean. In finitesion field, in order to remain spherical. The inclusion of
clusters the leading-order correction to the coarsening ratguadrupole terms, however, would require consideration of
from TLS theory isV}? as stated if14]. The rollover vol-  shape change of particles. Future directions in simulations
ume fraction between the volume fraction exponents 1/2 anghould also focus on structure factor developnm{&2 and
1/3 at which the Debye screening distance becomes compéie effects of thermal noise associated with capillary phe-
rable to the cluster size depends on the number of particlasomena.
considered. The dependence being?1$uggests that large
coarsening systems should not exhib}”® behavior. The
simulations of the 3162 particles just reiterate this statement. The authors gratefully acknowledge the financial support
The difference ofv:=1/27n2 and V;f=1/3n2 between  provided by the National Science Foundation, Washington
theory and simulations indicates some edge effect. Inclusiop.C. under Grant No. DMR-9633346. The authors also
of dipolar interactions becomes significant beyond a volumehank Dr. G. B. McFadden, NIST, Gaithersburg, Maryland,
fraction of 0.01, with further deviations from Debye screen-and Professor L. Greengard, Courant Institute of Mathemati-
ing of the orderV,,. The investigation of the rollover point cal Sciences, NYU, New York, for their valuable suggestions
from the Vi’z behavior to linear behavior requires more ro- on fast iterative solution methods for large linear systems.
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